Central Schemes and Central Discontinuous Galerkin Methods on Overlapping Cells
نویسنده
چکیده
The central scheme of Nessyahu and Tadmor (J. Comput. Phys, 87(1990)) has the benefit of not having to deal with the solution within the Riemann fan for solving hyperbolic conservation laws and related equations. But the staggered averaging causes large dissipation when the time step size is small comparing to the mesh size. The recent work of Kurganov and Tadmor (J. Comput. Phys, 160(2000)) overcomes the problem by use of a variable control volume and obtains a semi-discrete non-staggered central scheme. Motivated by this work, we introduce overlapping cell averages of the solution at the same discrete time level, and develop a simple alternative technique to control the O(1/∆t) dependence of the dissipation. Semi-discrete form of the central scheme can also be obtained. This technique is essentially independent of the reconstruction and the shape of the mesh, thus could also be useful for Voronoi mesh. The overlapping cell representation of the solution also opens new possibilities for reconstructions. Generally more compact reconstruction can be achieved. We demonstrate through numerical examples that combining two classes of the overlapping cells in the reconstruction can achieve higher resolution. Overlapping cells create self similarity in the grid and enable the development of central type discontinuous Galerkin methods for convection diffusion equations and elliptic equations with convection, following the series works of Cockburn and Shu (Math. Comp. 52(1989)).
منابع مشابه
New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field
New schemes are developed on triangular grids for solving ideal magnetohydrodynamic equations while preserving globally divergence-free magnetic field. These schemes incorporate the constrained transport (CT) scheme of Evans and Hawley [39] with central schemes and central discontinuous Galerkin methods on overlapping cells which have no need for solving Riemann problems across cell edges where...
متن کاملCentral Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction
The central scheme of Nessyahu and Tadmor [J. Comput. Phys., 87 (1990), pp. 408–463] solves hyperbolic conservation laws on a staggered mesh and avoids solving Riemann problems across cell boundaries. To overcome the difficulty of excessive numerical dissipation for small time steps, the recent work of Kurganov and Tadmor [J. Comput. Phys., 160 (2000), pp. 241–282] employs a variable control vo...
متن کاملCentral discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field
In this paper, central discontinuous Galerkin methods are developed for solving ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods designed for hyperbolic conservation laws on overlapping meshes, and use different discretization for magnetic induction equations. The resulting schemes carry many features of standard central dis...
متن کاملCentral Local Discontinuous Galerkin Methods on Overlapping Cells for Diffusion Equations
In this paper we present two versions of the central local discontinuous Galerkin (LDG) method on overlapping cells for solving diffusion equations, and provide their stability analysis and error estimates for the linear heat equation. A comparison between the traditional LDG method on a single mesh and the two versions of the central LDG method on overlapping cells is also made. Numerical expe...
متن کاملNon-Oscillatory Hierarchical Reconstruction for Central and Finite Volume Schemes
This is the continuation of the paper ”Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction” by the same authors. The hierarchical reconstruction introduced therein is applied to central schemes on overlapping cells and to finite volume schemes on non-staggered grids. This takes a new finite volume approach for approximating non-smooth s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005